Basics and Decontamination in Clinical Toxicology

Toxi-Latin Porto Alegre 2014

Florian Eyer
Toxicological Department
2nd Medizinische Klinik
Klinikum rechts der Isar
Technische Universität München
Theoretical Considerations

• Theoretically: reduced poison load = reduced morbidity and mortality

• Is there evidence that decontamination improves survival?

• Risk/Benefit-ratio of different procedures?

• Is there a chance to reach the poison?
Primary & Secondary Decontamination

<table>
<thead>
<tr>
<th>Primary Decontamination</th>
<th>Secondary Decontamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forced emesis</td>
<td>Alkaline diuresis</td>
</tr>
<tr>
<td>Gastric lavage</td>
<td>Gastrointestinal dialysis</td>
</tr>
<tr>
<td>Single dose activated charcoal (SDAC)</td>
<td>Multiple dose activated charcoal (MDAC)</td>
</tr>
<tr>
<td>Whole bowel irrigation (WBI)</td>
<td>Hemodialysis / Hemoperfusion</td>
</tr>
</tbody>
</table>
Primary decontamination
Forced (induced) emesis

• Sirup ipecacuanhae: 10-30 mL p.o.
 • marked reduction of tracer substances in GIT
 • high variability in recovery, time-dependency
 • No improvement of clinical outcome: „...The use should be abandoned...“

• to be considered: within the first hour after ingestion of a lethal dose of a truculent poison

Eddleston et al., 2003; Krenzelok et al., 2002 & 2004
Primary decontamination
Gastric lavage

• „Cornerstone in the management of poisoning emergencies“

• Many studies focused primarily on the recovery of marker substances, not on outcome

• If lavage is considered appropriate...it is essential...that the stuff...should be experienced in its execution...

• No study demonstrated any clinical benefit yet

• to be considered: within the first hour after ingestion of a lethal dose of a truculent poison

 Kulig et al., 2004; Vale et al., 1997 & 2004; Merigian et al., 1990
Primary decontamination
Gastric lavage

Krenzelok et al., 2002
Primary decontamination
Gastric lavage

- Position: left-side, head down (20°)
- Tube 36-40 Fr (Adults) or 24-28 Fr (Infants)
- 200-300 mL NaCl 0.9% or plain water, 37°

- Contraindications
 - compromised airway
 - Ingestion of caustics and solvents
Primary decontamination

Gastric lavage
Primäre Giftelimination

“Hazards of gastric lavage in a resource poor location“

Median reduction of drug exposure (%)
Gastric lavage: "a lack of beneficial effect"
Single Dose Activated charcoal

SDAC

- Surface: 500 - 3000 m² / g
- Binds most of all toxins (not: metals, alcohols)
- Dose: 1 g/kg b.w. as a slurry or ratio AC:poison=10:1
 - usually, 30-50 g bolus is sufficient and tolerable
 - administer as early as possible (e.g. nasogastric tube)
- Seems to be inferior to MDAC
- Don´t use cathartics together with AC ever

Chyka et al., 1997 & 2005; Barceloux et al., 1997
Whole bowel irrigation (WBI)

- performed with osmotic-balanced PEG-ES; 500-2000 ml/h
- Interference with absorption capacity of activated charcoal?
- No „standard care option“
- No data regarding improvement of patient´s outcome
- To be considered: Ingestion of slow-release formulations or in the treatment of „body packers“

Tennenbein et al., 2004; Krenzelok et al., 2002
Secondary Elimination Techniques
Forced alkaline diuresis

• Rationale

 • Increased filtrate flow results in shorter time for reabsorption

 • Modifying urine pH results in ionisation of acidic or alkaline drugs becoming not absorbable

 • effective ionisation requires: Urin-pH = Blood-pH + 1

• Forced renal elimination has been shown for:

 • Diflunisal, barbiturates, MTX, fluorides, salicylates

Proudfoot et al., 2004
Secondary Elimination
Multiple dose activated charcoal

- 25-50 g AC every 4-6 hours up to 300 g total load
- may prevent primary absorption and trapping of poison with relevant enterohepatic or enterovascular circulation
- contradictory results of two prospective randomized trials in Sri Lanka
 - de Silva et al.: significant reduction in mortality & morbidity (n=400)
 - Eddleston et al.: no significant benefit comparing NoAC vs SDAC vs MDAC regarding primary & secondary endpoints (n=4500)
 Eyer et al., 2007 & 2008; de Silva et al., 2003; Eddleston et al., 2008
Secondary Elimination
Multiple dose activated charcoal

• Effectiveness in vitro regarding t1/2 and Clearance shown for:

 • Carbamazepine

 • Dapsone

 • Phenobarbital

 • Chinin / Chinidin

 • Theophylline

• Don`t use MDAC together with cathartics

• Interruption of seromucosal transport seems to be clinically irrelevant

 Vale et al., 1999; Brahmi et al., 2006; Eyer et al., 2007 & 2008
Secondary Elimination
Hemodialysis / Hemoperfusion
Secondary Elimination
Hemodialysis / Hemoperfusion

- Premises for effective elimination
 - low protein binding
 - slow endogenous clearance
 - small volume of distribution
 - small molecule size
 - adsorbable to AC (HP)
Secondary Elimination
Hemodialysis / Hemoperfusion

• Consensus for effective elimination for:
 • Salicylates (HD)
 • Methanol, Ethyleneglycol, Isopropanol (HD)
 • Valproic acid (HD), Carbamazepine (HP)
 • Lithium (HD)
 • Phenobarbital (HD/HP)
 • Theophylline (HP)
 • Phenytoin (HP)

Shalkam et al., 2006
Facts to remember - Decontamination
(Take Home Message)

• Primary decontamination (if ever) only in cases of massive ingestion of a truculent poison within one hour

• Alkaline diuresis seems to be theoretically reasonable for few poisons...

• HD & HP is indicated for a small number of poisons and can be lifesaving

• MDAC seems (still) justifiable for most poisons with respect to precautions
Identification of the poisoned patient at risk for ICU transfer

Florian Eyer
Department of Toxicology
Klinikum rechts der Isar
Technical University Munich
Florian.Eyer@mac.com
Introduction (1)

- Admissions due to poisonings are frequent in the ED
- Only the minority of patients will develop signs of serious toxicity calling for ICU-transfer
- Due to shortness in ICU-capacity, to outweigh both patient safety and economic aspects, predicting factors for serious toxicity in the course of overdose are urgently needed
- It is unclear, however, which patients should be subject for aggressive monitoring and/or ICU-treatment
Introduction (2)

- Patients with intoxications may present critically ill and warrant ICU admission.

- Many other patients who are initially stable have the potential for rapid deterioration and require continuous cardiopulmonary or neurologic monitoring.

- ICU admission in these patients is thus frequently required.
ICU-transfer in poisonings

• Critical illness of poisoned patients may result from

 • direct toxic effects: e.g. cardiodepressants, sedatives, acute liver or renal failure

 • indirect, non-specific complications due to poisoning

 • aspiration pneumonia (e.g. OD with antidepressants, neuroleptics, sedatives, opiates)

 • anoxic encephalopathy after opioid-OD

 • renal failure due to rhabdomyolysis
Points favoring ICU transfer (1)

• Close hemodynamic and/or laboratory monitoring after massive overdose

• Significant comorbidity of the poisoned patient (e.g. chronic diseases like heart failure, diabetes, immunosuppression, chronic pulmonary diseases)

• Life threatening symptoms occurring during poisoning
 • loss of consciousness
 • Inability to allow a pertinent safe airway
 • respiratory insufficiency or arrest
 • cardiovascular instability or failure
Points favoring ICU transfer (2)

- Abnormal signs of microcirculation resulting from hypotension warrant close monitoring of
 - urine output
 - serum creatinine, transaminases
 - venous plasma lactate ($\text{Lactate}^* > 3.0 \text{ mmol/L}$ was associated with a 15-fold increase in odds of fatality)

Points favoring ICU transfer (3)

- Overdoses with β-Blockers or CCB with hypotension not readily improved by careful fluid administration and/or vasopressors/inotropes in standard doses

- Tricyclic- or Neuroleptic overdoses with
 - QRS-prolongation above 120ms
 - T40ms vector between 130-270° (complicated, not readily available*)

*Eyer et al., 2009 Hum Exp Toxicol 28(8):511-519
Predicting a patient’s low risk

• if none of the following criteria was present in the ED
 • need for intubation
 • seizures
 • unresponsive to verbal stimuli
 • $\text{paO}_2 < 45 \text{ mmHg}$
 • second- or third-degree AV-block
 • $\text{QRS} > 120 \text{ msec}$
 • systolic pressure < 100mmHg

Brett et al., Arch Intern Med 1987; 147
Problems

- in the majority no close (if any) relation between ingested dose, serum level and severity of overdose

- patients with absent signs of toxicity (e.g. in the ED) may develop serious toxicity in the further course

- instant lab-analysis to exclude serious OD is frequently not readily available (e.g. AAP- or Salicylate toxicity)

- Intoxications with cardiotoxicants and occurrence of hypotension neither necessarily mean the need for vasopressor use nor ICU-transfer - but can even mandate for extracorporeal life support in the most severe cases

- clear prognosticators predicting a severe course of poisoning remain unclear
Serum concentration of toxins

Table 3—Specific Serum Concentrations That May Affect Management

<table>
<thead>
<tr>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
</tr>
<tr>
<td>Carbamazepine</td>
</tr>
<tr>
<td>Cooximetry (carboxyhemoglobin, methemoglobin, sulfhemoglobin)</td>
</tr>
<tr>
<td>Digoxin</td>
</tr>
<tr>
<td>Selected metals (iron, lead, mercury; based on history and clinical findings)</td>
</tr>
<tr>
<td>Lithium</td>
</tr>
<tr>
<td>Phenytoin</td>
</tr>
<tr>
<td>Salicylate</td>
</tr>
<tr>
<td>Theophylline, caffeine</td>
</tr>
<tr>
<td>Toxic alcohol (ethylene glycol, isopropanol, methanol)</td>
</tr>
<tr>
<td>Valproic acid</td>
</tr>
</tbody>
</table>
Risk identification

- Should account for
 - time and dose ingested
 - formulation (e.g. immediate-release or sustained-release preparations)
 - co-ingestions (synergistic or protective effects?)
 - delay in treatment since exposure (e.g. AAP)
 - patients medical condition at onset of overdose
 - drug elimination (e.g. impaired renal function, poor- or fast metabolizers, hepatic insufficiency, enterohepatic circulation)
Prognostic scores

• APACHE-II, SAPS-II, PSS or SOFA-scores are useful (e.g. for retrospective or prospective trials) to quantify critical illness (at the time when the score is captured) but is limited to predict ICU-transfer

• Glasgow coma scale (GCS)

 • e.g. GCS score of 5 certainly persuade ICU-transfer but not necessarily mandate intubation
Prognostic factors - children

• Predictors of outcome in children with acute poisonings admitted to PICU with kerosene, iron, carbamates, OP´s

• Significant predictors for PICU-admission (implicating increased mortality) in a recent multivariate analysis (n=225) were:
 • Hypotension at admission
 • higher PRISM-score (Pediatric risk of mortality)

Jayashree M et al., Journal of Trop Pediatrics 2011;57
<table>
<thead>
<tr>
<th>Variable</th>
<th>Age Restrictions and Ranges</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>Infants 130-160</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>55-65</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>>160</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>40-54</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td><40</td>
<td>7</td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>all ages >110</td>
<td>6</td>
</tr>
<tr>
<td>HR (beat/min)</td>
<td>Infants >160</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td><90</td>
<td>5</td>
</tr>
<tr>
<td>Respiratory rate (breath/min)</td>
<td>Infants 61-90</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>90</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Children 51-70</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>>70</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Apnea</td>
<td>5</td>
</tr>
<tr>
<td>PaO₂/Fio₂</td>
<td>all ages 200-300</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><200</td>
<td>3</td>
</tr>
<tr>
<td>Paco₂ (torr)</td>
<td>all ages 51-65</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>65</td>
<td>5</td>
</tr>
<tr>
<td>Glasgow Coma Score</td>
<td>all ages <8</td>
<td>6</td>
</tr>
<tr>
<td>Pupillary reactions</td>
<td>unequal or dilated fixed and dilated</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>all ages</td>
<td>10</td>
</tr>
<tr>
<td>PT/PTT</td>
<td>1.5 × control</td>
<td>2</td>
</tr>
<tr>
<td>Total bilirubin (mg/dl)</td>
<td>>1 mo</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>>3.5</td>
<td>6</td>
</tr>
<tr>
<td>Potassium (mEq/L)</td>
<td>all ages 3.0-3.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6.5-7.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td><3.0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>>7.5</td>
<td>5</td>
</tr>
<tr>
<td>Calcium (mg/dl)</td>
<td>all ages 7.0-8.0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>12.0-15.0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td><7.0</td>
<td>6</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>all ages 40-60</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>250-400</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td><40</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>>400</td>
<td>8</td>
</tr>
<tr>
<td>Bicarbonate (mEq/L)</td>
<td>all ages <16</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>>32</td>
<td>3</td>
</tr>
</tbody>
</table>
Prognostic factors - children

<table>
<thead>
<tr>
<th>Variable</th>
<th>Survivors (N=205)</th>
<th>Non-survivors (N=20)</th>
<th>95% CI for mean difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years; mean)</td>
<td>3.1 ± 3.0</td>
<td>4.8 ± 3.8</td>
<td>-3.1</td>
<td>0.021*</td>
</tr>
<tr>
<td>PRISM (mean)*</td>
<td>7.2 ± 8.6</td>
<td>20.7 ± 13.8</td>
<td>-23.9</td>
<td>0.011*</td>
</tr>
<tr>
<td>Length of PICU stay (days; mean)</td>
<td>5.7 ± 7.8</td>
<td>3.4 ± 5.1</td>
<td>-1.8</td>
<td>0.348</td>
</tr>
<tr>
<td>Interval between ingestion and reaching hospital</td>
<td>13.5 ± 26.1</td>
<td>10.4 ± 16.3</td>
<td>-9.0</td>
<td>0.609</td>
</tr>
<tr>
<td>Hb (g/dl; mean)</td>
<td>10.7 ± 2.1</td>
<td>12.2 ± 2.3</td>
<td>-3.0</td>
<td>0.066</td>
</tr>
<tr>
<td>Total leukocyte count (mean)</td>
<td>13 204 ± 6093</td>
<td>11 504 ± 8875</td>
<td>-5680.2</td>
<td>0.650</td>
</tr>
<tr>
<td>Platelet count (mean)</td>
<td>298 005 ± 117 328</td>
<td>258 005 ± 167 320</td>
<td>-87 076.7</td>
<td>0.524</td>
</tr>
<tr>
<td>Male:female</td>
<td>141:64</td>
<td>14:6</td>
<td></td>
<td>0.910</td>
</tr>
<tr>
<td>Hypotension at admission</td>
<td>11</td>
<td>6</td>
<td></td>
<td>0.001**</td>
</tr>
<tr>
<td>O₂ requirement</td>
<td>86</td>
<td>13</td>
<td></td>
<td>0.029**</td>
</tr>
<tr>
<td>Ventilation requirement</td>
<td>27</td>
<td>15</td>
<td></td>
<td>0.0001**</td>
</tr>
</tbody>
</table>

*The PRISM scores are available for 84 patients only.
*p < 0.05 by Students’ t-test; **p < 0.05 by Chi Square test.
Conclusion

- Identification of patient’s at risk for ICU transfer in case of intoxication is a predominantly individual decision

- ICU-transfer may be warranted
 - Organ failure
 - need for invasive monitoring or symptomatic treatment (e.g. ventilation, hemodialysis)
 - ECG and occasionally serum drug concentrations may provide rare prognosticators in poisonings
Thank you for your kind attention!